CANTT ACADEMY

CHAPTER \# 06: SOLUTIONS

SOLUTION: A solution is a homogeneous mixture of different substances that has uniform composition throughout. BINARY SOLUTION: A solution which is obtained by mixing only two substances is called binary solution.

SOLUTE: The substance which is present in lesser amount is called solute.
SOLVENT: The substance which is present in larger amount is called solvent.
AQUEOUS SOLUTION: A solution in which water is solvent is called an aqueous solution. SATURATED SOLUTION: A solution which cannot dissolve more amount of the solute at a particular temperature is called saturated solution.

UNSATURATED SOLUTION: A solution which can dissolve more amount of solute at a particular temperature is called unsaturated solution.

SUPERSATURATED SOLUTION: A solution which has more amount of solute than the required amount to prepare the saturated solution is called super saturated solution.

CONCENTRATION UNITS

CONCENTRATION OF SOLUTION: The quality of a solute present in a given amount of solvent or solution is called concentration of solution.

DILUTE SOLUTION: A solution whose concentration is relatively low is called dilute solution. CONCENTRATED SOLUTION: A solution whose concentration is relatively high is called concentrated solution. PERCENTAGE OF SOLUTION: The mass of solute dissolved in 100 gram of solution is called percentage of a solution.

OR

The volume of solute dissolved in $100 \mathrm{~cm}^{3}$ of solution is called percentage of a solution.
There are four ways to express percentage of solutions.
i) If we dissolve 10 g NaCl in 90 g water to make 100 g of solution. In this case the concentration of the solution will be $10 \% \mathrm{~m} / \mathrm{m}$.
ii) If we dissolve 10 g NaCl in sufficient water to make $100 \mathrm{~cm}^{3}$ of solution. In this case the concentration of the solution will be $10 \% \mathrm{~m} / \mathrm{v}$.
iii) If we dissolve $10 \mathrm{~cm}^{3}$ of alcohol in sufficient water to make 100 g of solution. In this case the concentration of the solution will be $10 \% \mathrm{v} / \mathrm{m}$.
iv) If we dissolve $10 \mathrm{~cm}^{3}$ of alcohol in sufficient water to make $100 \mathrm{~cm}^{3}$ of solution. In this case the concentration of the solution will be $10 \% \mathrm{v} / \mathrm{v}$.

MOLARITY: The number of moles of a solute dissolved per dm^{3} of a solution is called molarity.

$$
\begin{aligned}
& \text { Molarity }=\frac{\text { Moles of solute }}{\text { Volume in } m^{3}} \\
& \text { Moles }=\frac{\text { Mass of solute }}{\text { Molar Mass }}
\end{aligned}
$$

Where

PAGE - NO - 112: EXAMPLE

Urea $\left(\mathbf{N H}_{2} \mathrm{CONH}_{2}\right)$ is a white solid used as fertilizer and starting material for synthetic plastic. A solution contains $\mathbf{4 0}$ gram urea dissolve in $500 \mathrm{~cm}^{3}$ of solution. Calculate the molarity.

SOLUTION: Mass of urea $=40$ gram

$$
\text { Volume of solution }=500 \mathrm{~cm}^{3}=\frac{500}{1000}=0.5 \mathrm{dm}^{3}
$$

Molar mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=14+(1 \times 2)+12+16+14+(1 \times 2)$

$$
=14+2+12+16+14+2=60 \mathrm{~g} / \mathrm{mole}
$$

We know

$$
\begin{aligned}
& \text { Moles }=\frac{\text { Mass of solute }}{\text { Molar mass }} \\
& \text { Moles }=\frac{40}{60} \Rightarrow \quad \text { Moles }=0.667 \text { moles }
\end{aligned}
$$

Now;

$$
\begin{aligned}
\text { Molarity } & =\frac{\text { Mass of solute }}{\text { Volume in dm }}{ }^{3} \\
& =\frac{0.667}{0.5}=1.334 \mathrm{M}
\end{aligned}
$$

PAGE - NO - 112: EXAMPLE - NO - 6.1:

Potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ is a dark blue-black compound. When it is dissolved in water, it forms a bright purple solution. It is used as disinfectant in water tanks. It is also known as pinky. A solution contains 0.05 moles of KMnO_{4} in $600 \mathrm{~cm}^{\mathbf{3}}$ of solution. Calculate molarity of this solution.

$$
\begin{aligned}
\text { Moles of } \mathrm{KMnO}_{4} & =0.05 \\
\text { Volume of solution } & =600 \mathrm{~cm}^{3}=\frac{600}{1000}=0.6 \mathrm{dm}^{3} \\
\text { Molarity } & =? \\
\text { We know } \quad \text { Molarity } & =\frac{\text { Moles of solute }}{\text { Volume in } \mathrm{dm}^{3}} \\
& =\frac{0.05}{0.6}=0.083 \mathrm{M}
\end{aligned}
$$

PAGE - NO - 113: SELF ASSESSMENT EXERCISE - NO - 6.4:
Potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ is a white solid. It is used in making matches and dyes. Calculate the molarity of solution that contains. (a) $\mathbf{1 . 5}$ moles of this compound dissolved in $\mathbf{2 5 0} \mathbf{c m}^{\mathbf{3}}$ of solution (b) $\mathbf{7 5}$ g of this compound dissolved to produce $1.25 \mathbf{~ d m}^{3}$ of solution. (c) what is the molarity of a $50 \mathbf{c m}^{\mathbf{3}}$ sample of potassium chlorate solution that yields $\mathbf{0 . 2 5}$ residue after evaporation of the water.

Solution : Part a:

We know

$$
\begin{aligned}
\text { Moles of } \mathrm{KClO}_{3} & =1.5 \\
\text { Volume of solution } & =250 \mathrm{~m}^{3}=\frac{250}{1000}=0.25 \mathrm{dm}^{3} \\
\text { Molarity } & =? \\
\text { Molarity } & =\frac{\text { Moles of solute }}{\text { Volume in dm }} \\
\text { Molarity } & =\frac{1.5}{0.25}=6 \mathrm{M}
\end{aligned}
$$

Part b:

$$
\begin{aligned}
\text { Given mass of } \mathrm{KClO}_{3} & =75 \mathrm{~g} \\
\text { Volume of solution } & =1.25 \mathrm{dm}^{3} \\
\text { Molarity } & =? \\
\text { Molar mass of } \mathrm{KClO}_{3} & =39+35.5+(16 \times 3) \\
& =122.5 \mathrm{~g} / \text { moles }
\end{aligned}
$$

Now;

$$
\begin{aligned}
\text { Moles } & =\frac{\text { Mass of solute }}{\text { Molar mass }} \\
& =\frac{75}{122.5}=0.6122 \mathrm{moles}
\end{aligned}
$$

Now;

$$
\begin{aligned}
\text { Molarity } & =\frac{\text { Moles of solute }}{\text { Volume in } \mathrm{dm}^{3}} \\
& =\frac{0.6122}{1.25}=0.4897 \mathrm{M}
\end{aligned}
$$

Part c:

$$
\begin{aligned}
\text { Volume of solution } & =50 \mathrm{~cm}^{3}=\frac{50}{1000}=0.05 \mathrm{dm}^{3} \\
\text { Given mass of } \mathrm{KClO}_{3} & =39+35.5+(16 \times 3) \\
& =39+35.5+48 \\
\text { Molar mass } & =122.5 \mathrm{~g} / \text { moles }
\end{aligned}
$$

Now;

$$
\begin{aligned}
\text { Moles } & =\frac{\text { Mass of solute }}{\text { Molar mass }} \\
& =\frac{0.25}{122.5} \\
& =0.00204 \text { moles }
\end{aligned}
$$

Now;

$$
\begin{aligned}
\text { Molarity } & =\frac{\text { Moles of solute }}{\text { Volume in } \mathrm{dm}^{3}} \\
\text { Molarity } & =\frac{0.00204}{0.05} \\
& =0.0408 \mathrm{M}
\end{aligned}
$$

PAGE - NO - 115 - SELF ASSESSMENT EXERCISE 6.5:

1) Sodium hydroxide solutions are used to neutralize acids and in the preparation of soaps and rayon. If you dissolve 25 g of NaOH to make $1 \mathrm{dm}^{3}$ of solution, what is the molarity of this solution.

$$
\begin{aligned}
\text { Mass of } \mathrm{NaOH} & =25 \mathrm{~g} \\
\text { Volume of Solution } & =1 \mathrm{dm}^{3} \\
\text { Molarity } & =\mathrm{M}=?
\end{aligned}
$$

Solution: \quad Molar mass of $\mathrm{NaOH}=23+16+1=40 \mathrm{~g} / \mathrm{mol}$
We know Moles of solute $=\frac{\text { mass of solute }}{\text { Molar mass }}=\frac{25}{40}=0.625$ moles
We know that if volume of solution is $1 \mathrm{dm}^{3}$ then molarity and moles are equal so

$$
\begin{aligned}
& \text { Molarity }=\text { Moles of solute } \\
& \text { Molarity }=0.625 \mathrm{M}
\end{aligned}
$$

2 A solution of NaOH has concentration 1.2M. Calculate the mass of NaOH in $\mathrm{g} / \mathrm{dm}^{3}$ in this solution.

$$
\begin{aligned}
\text { Molarity } & =1.2 \mathrm{M} \\
\text { Mass of } \mathrm{NaOH} \text { in } \mathrm{g} / \mathrm{dm}^{3} & =? \\
\text { Volume of solution } & =1 \mathrm{dm}^{3}
\end{aligned}
$$

Solution:

$$
\text { Molar mass of } \mathrm{NaOH}=23+16+1=40 \mathrm{~g} / \mathrm{mol}
$$

We know that if volume of solution is $1 \mathrm{dm}^{3}$ then molarity and moles are equal

Now;

$$
\text { so, } \begin{aligned}
\text { Molarity } & =\text { Moles } \\
1.2 & =\text { Moles } \\
\text { Moles } & =1.2 \\
\text { Moles of solute } & =\frac{\text { Mass of NaOH }}{\text { Molar Mass }} \\
1.2 & =\frac{\text { Mass of NaOH }}{40} \\
1.2 \times 40 & =\text { Mass of } \mathrm{NaOH} \\
\text { Mass of } \mathrm{NaOH} & =40 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

3 A solution is prepared by dissolving 10 g of haemoglobin in enough water to make up $1 \mathbf{d m}^{3}$
in volume. Calculate molarity of this solution. Molar mass of haemoglobin is $6.51 \times 10^{4} \mathrm{~g} / \mathrm{mole}$.

$$
\begin{aligned}
\text { Mass of Hemoglobin } & =10 \mathrm{~g} \\
\text { Volume of solution } & =1 \mathrm{dm}^{3} \\
\text { Molar mass of Hemoglobin } & =6.5 \times 10^{4} \mathrm{~g} / \mathrm{mole} \\
\text { Molarity } & =?
\end{aligned}
$$

SOLUTION: Moles of hemoglobin $=\frac{\text { Mass of Hemoglobin }}{\text { Molar mass hemoglobin }}$
Moles of hemoglobin $=\frac{10}{6.5 \times 10^{4}}$
Moles of hemoglobin $=\frac{10}{6.51} \times 10^{-4}=1.536 \times 10^{-4}$ moles
We know that if volume of solution is $1 \mathrm{dm}^{3}$ then molarity and moles are eq.

$$
\text { so, } \quad \begin{aligned}
& \text { Molarity }=\text { Moles } \\
& \text { Molarity }=1.536 \times 10^{-4} \mathrm{M} \\
& \hline
\end{aligned}
$$

PAGE - NO - 116: SELF - ASSESSMENT EX - NO - 6.6:

(1) How can you prepare $500 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{KMnO}_{4}$ Solution? SOLUTION:

So,
Therefore;

$$
\begin{aligned}
\text { Required volume } & =500 \mathrm{~cm}^{3}=\frac{500}{1000}=0.5 \mathrm{dm}^{3} \\
\text { Morality } & =0.2 \mathrm{M}
\end{aligned}
$$

We know If volume of solution is $1 \mathrm{dm}^{3}$ then
Number of moles $=$ Molarity
Number of moles $=0.2$ moles
$1 \mathrm{dm}^{3}$ solution $=0.2$ moles of KMnO_{4}
$0.5 \mathrm{dm}^{3}$ solution $=0.5 \times 0.2$ moles of KMnO_{4}
$0.5 \mathrm{dm}^{3}$ solution $=0.1$ moles of KMnO_{4}
Now; Molar mass of $\mathrm{KMnO}_{4} \quad=\quad 39+55+(16 \mathrm{x} 4)=39+55+36=158 \mathrm{~g} / \mathrm{mol}$

e know	$=$	$\frac{\text { mass of solute }}{\text { Moles of solute mass }}$
So;	$=$	$\frac{\text { Mass of KMnO}}{4}$
Molar mass of $K M n O_{4}$		
0.1	$=$	$\frac{\text { Mass of KMnO }}{4}$
158		
0.1×158	$=$	${\text { Mass of } \mathrm{KMSO}_{4}}^{\text {Moles of } \mathrm{KMnO}_{4}}$
	$=15.8 \mathrm{~g}$	

2. How can you prepare $25 \mathrm{~cm}^{\mathbf{3}}$ of 0.25 M solution of $\mathrm{CuSO}_{\mathbf{4}} \mathbf{5 H}_{\mathbf{2}} \mathrm{O}$ (Blue vitriol)

$$
\begin{array}{ll}
\text { Required volume } & =25 \mathrm{~cm}^{3}=\frac{25}{1000}=0.025 \mathrm{dm}^{3} \\
\text { Morality } & =0.25 \mathrm{M}
\end{array}
$$

We know If volume of solution is $1 \mathrm{dm}^{3}$ then

Number of moles		$=$	Molarity
So,	Number of moles	=	0.25
Therefore;	; $1 \mathrm{dm}^{3}$ solution	=	0.25 moles of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
	$0.025 \mathrm{dm}^{3}$ solution	$=$	0.025×0.25 moles of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
	$0.025 \mathrm{dm}^{3}$ solution	$=$	0.0065 moles
Now;	Molar mass of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$	$=$	$63.5+32+(16 \times 4)+5[1 \times 2.6]$
		$=$	$63.5+32+64+5(18)=249.5 \mathrm{~g} / \mathrm{moles}$
We know,	, Moles of solute	$=$	$\frac{\text { Mass of solute }}{\text { Molar mass }}$
	0.0065 moles	$=$	$\underline{\text { Mass of } \mathrm{CuSO}_{4.5 \mathrm{H}_{2} \mathrm{O}}}$
			249.5
	(0.0065)(249.5)	$=$	mass of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
	Mass of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$	$=$	1.5593 g

PAGE - NO - 117: SELF ASSESSMENT - EX - NO 6.7:

1. A stock solution of hydrochloric acid is 12.1 M . How many cm^{3} of this solution should you use to prepare $500 \mathrm{~cm}^{3}$ of 0.1 M HCl .

$$
\begin{array}{ll}
\text { Molarity of given } \mathrm{HCl} & =\mathrm{M}=12.1 \mathrm{M} \\
\text { Volume of given } \mathrm{HCl} & =\mathrm{V}_{1}=? \\
\text { Molarity of required } \mathrm{HCl} & =\mathrm{M}_{2}=0.1 \mathrm{M} \\
\text { Volume of required } \mathrm{HCl} & =\mathrm{V}_{2}=500 \mathrm{~cm}^{3}
\end{array}
$$

Solution: We know that

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

$$
\begin{aligned}
(12.1) \mathrm{V}_{1} & =(0.1)(500) \\
(12.1) \mathrm{V}_{1} & =50 \\
\mathrm{~V}_{1} & =\frac{50}{12.1}=4.13 \mathrm{~cm}^{3}
\end{aligned}
$$

3. Commercial acetic acid is $\mathbf{1 7 . 8}$ molar. How can you convert this into 0.1 M acetic acid.
 Number of moles $=17.8$
 Molarity $=0.1 \mathrm{M}$
 Volume of solution $=$?

Solution:
We know
Molarity $\quad=\frac{\text { Number of moes }}{\text { Volume in } \text { dm }^{3}}$
0.1
$=\frac{17.8}{\text { Volume in } \mathrm{dm}^{3}}$
Volume in $\mathrm{dm}^{3}=\frac{17.8}{0.1}$
Volume in $\mathrm{dm}^{3}=178 \mathrm{dm}^{3}$

SOLUBILITY

The amount of solute that dissolve in 100 g of a solvent at a particular temperature is called solubility.

EFFECT OF TEMPERATURE ON SOLUBILITY:

Change in temperature has different effects on the solubility of a compound. By the change in temperature the solubility can increase, decrease or remain same.
i. INCREASE IN SOLUBILITY: Generally the solubility of ionic compounds increases with the increase in temperature. For example if we add $\mathbf{3 4 . 7} \mathbf{g}$ of $\mathbf{~ K C l}$ to $\mathbf{1 0 0} \mathbf{g}$ of water at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$. At this temperature $\mathbf{K C l}$ will dissolve in water completely. But if we increase the amount of $\mathbf{K C l}$ from $\mathbf{3 4 . 7} \mathbf{g}$ then more amount of $\mathbf{K C l}$ will not dissolve in water at $\mathbf{2 0}^{\circ} \mathbf{C}$. However if we increase temperature up to $10 \mathbf{0}^{\mathbf{}} \mathbf{C}$ then more amount of $\mathbf{K C l}$ will dissolve in water easily. This shows that the solubility of $\mathbf{K C l}$ increases due to increase in temperature.
ii. DECREASE IN SOLUBILITY: The solubility of solids such as $\mathbf{N a}_{2} \mathbf{S O}_{4}$ decreases with increase in temperature. The solubility of air in water also decreases with increase in temperature.
In a home aquarium on a hot day the temperature of air is also very high. Due to this high temperature a very small amount of oxygen dissolve in water. Therefore the fish feel difficulty in breathing and shows sign of stress.
iii. SOLUBILITY REMAINS SAME: There are some substances whose solubility does not change by the change in temperature. For example the solubility of ' $\mathbf{N a C l}$ ' in water does not change by the change in temperature.

Q: Explain the fact that like dissolve like. OR Why methanol dissolve in water?

Ans: It is a well known fact that "Like dissolve like". It means that similar substances can be dissolve into similar substance. Different substances cannot be dissolved into each other. For example methanol and water both are polar substances hydrogen and water is present in both similar intermolecular forces. Therefore methanol dissolves in water easily.

CANTT ACADEMY

Q: Why Gasoline and oils do not dissolve in water?

Ans: It is a well known fact that "Like dissolve like". It means that similar substances can be dissolve into similar substance. Different substances cannot be dissolve in each other. We know that gasoline and oil are non polar substances and water is a polar substance. The forces of attraction of water molecules with the molecules of oil and gasoline are very weak so gasoline do not dissolve in water.

COMPARISON OF PROPERTIES OF SOLUTIONS, SUSPENSION AND COLLOIDS

S. No	Solutions	Suspensions	Colloids
$\mathbf{1 .}$	Homogeneous	Heterogeneous	Heterogeneous
$\mathbf{2 .}$	Particles size vary from 0.1 to 1 nm	Particles size is greater than $10^{3} \mathrm{~nm}$	Particles size vary from 1 to $10^{3} \mathrm{~nm}$
$\mathbf{3 .}$	Particles are invisible by naked eye, ordinary microscope as well as electron microscope	Particles are visible by naked eye	Particles are invisible by naked eye and in ordinary microscope but visible under electron microscope
$\mathbf{4 .}$	Particles can pass through ordinary as well as ultra filter paper	Particles cannot pass through ordinary as well as ultra filter paper	Particles can pass through ordinary filter paper but cannot pass through ultra filter paper.
$\mathbf{5 .}$	Cannot scatter light	Scatter light	Scatter light

PAGE - NO - 119: SELF ASSESSMENT: EX - NO 6.3:

Q: Sodium chloride and glucose both are soluble in water. But the solubility of $\mathbf{N a C l}$ is greater

 than glucose. Explain why?Ans: The solubility of sodium chloride in water is greater than solubility of glucose. This is because in sodium chloride the attraction of sodium ($\mathbf{N a}^{+}$) and Chloride $\left(\mathbf{C l}^{-}\right)$ions with water molecules is greater than the attraction of glucose molecules with water.

Q: Why the fish shows the signs of stress on a hot day in a home aquarium?

Ans: In a home aquarium the fish shows sign of stress on a hot day. This is because on a hot day the temperature of air is also very high. Due to this high temperature a very small amount of oxygen dissolve in water. As a result the fish feel difficulty in breathing.

CANTT ACADEMY

Bhatti Street Near Mann-0-Salwa Tulsa Road Lalazar Rwp Ph: 051-8442595, 5122139, Cell: 0345-5930370

PAGE - NO - 123: EXERCISE QUESTION

Q.2(i): Different between saturated and unsaturated solution?

Saturated Solution: A solution which cannot dissolve more amount of solute at a particular temperature is called saturated solution.

Unsaturated Solution: A solution which can dissolve more amount of solute at a particular temperature is called unsaturated solution.
Q.2(ii): Give example of a solid solution containing two solids?

Alloy is an example of a solution containing two solids.
Brass: Brass is an alloy of copper and zinc.
Steel: Steel is an alloy of iron containing small amount of carbon and silicon.

Q: Can you call colloid a solution?

Yes. we can call colloid a solution because we know that a heterogeneous mixture of tiny particles of a substance dispersed through a medium is called colloids.

Q: Gasoline does not dissolve in water, Why?

It is well know that "like dissolve like". It means that similar substance can be dissolve into similar substances. Different substances cannot dissolve into different substances. We know that gasoline and oil are non - polar substance and water is a polar substance. Therefore the forces of attraction between the molecules of water with gasoline or oil are very weak. So gasoline and oil do not dissolve in water.

Q-No-2-(v): Are gemstone solution?

Ans: Yes, gemstone are solution. They are called solutions of solid in a solid. There are many naturally occurring gemstone which are solid solution. For example, Ruby and opal both these gemstone are solid solution.

Page - No - 123: Q-No-3 (a): A tiny crystal of a solid substance is added to an aqueous solution

 of the some substance. What would happen if the original solution wasa) Saturated
b) Unsaturated
c) Super saturated?

Ans: Super saturated: If a tiny crystal of a solid substance is added to an aqueous super saturated solution then crystallization will start.

Unsaturated Solution: If a tiny crystal of a solid substance is added to an aqueous unsaturated then tiny crystal of solid will dissolve in the solution.

Saturated Solution: If a tiny crystal of a solid substance is added to an aqueous saturated solution then crystal of solid will settle down to the bottom of the solution.

Page - No - 124: Q-No-4: Explain why $\mathrm{CH}_{3} \mathrm{OH}$ is soluble in water but $\mathrm{C}_{6} \mathrm{H}_{6}$ is not.
Ans: We know that it is a well known fact that "like dissolve like". It means that similar substances can be dissolve into similar substances. $\mathbf{C H}_{\mathbf{3}} \mathbf{O H}$ and water both are polar substances. Hydrogen bonding is present between their molecules. They also have similar structure and similar intermolecular forces. Therefore $\mathbf{C H}_{\mathbf{3}} \mathbf{O H}$ is soluble in water. But $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{6}}$ is non polar molecule and its properties are different form properties of water. Therefore $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{6}}$ cannot be dissolve into water.

Page-No-124: Q-No-5

How can you prepare $250 \mathrm{~cm}^{3}$ of $0.5 \mathrm{M} \quad \mathrm{MgSO}_{4}$ from a stock solution of 2.5 M MgSO ?

$$
\begin{aligned}
\text { Molarity of given } \mathrm{MgSO}_{4} & =\mathrm{M}_{1}=2.5 \mathrm{M} \\
\text { Volume of given } \mathrm{MgSO}_{4} & =\mathrm{V}_{1}=? \\
\text { Molarity of required } \mathrm{MgSO}_{4} & =\mathrm{M}_{2}=0.5 \mathrm{M} \\
\text { Volume of required } \mathrm{MgSO}_{4} & =\mathrm{V}_{2}=250 \mathrm{~cm}^{2}
\end{aligned}
$$

Solution:
We know

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
(2.5)\left(\mathrm{V}_{1}\right) & =(0.5)(250) \\
\mathrm{V}_{1} & =\frac{(0.5)(250)}{2.5} \\
\mathrm{~V}_{1} & =50 \mathrm{~cm}^{3}
\end{aligned}
$$

Page-No-124: Q-No-8

What is the morality of a solution prepared by dissolving 1.25 g of HCl gas into enough water to make $30 \mathrm{~cm}^{3}$ of solution.

$$
\begin{aligned}
\text { Mass of } \mathrm{HCl} & =1.25 \mathrm{~g} \\
\text { Volume of solution } & =30 \mathrm{~cm}^{3}=\frac{30}{1000}=0.03 \mathrm{~cm}^{3} \\
\text { Molarity } & =? \\
\text { Molar mass of HCl } & =1+35.5=36.5 \mathrm{~g} / \mathrm{mol} \\
\text { We know } & \\
\text { Moles of solute } & =\frac{\text { Mass of solute }}{\text { Molar mass }} \\
& =\frac{1.25}{36.5}=0.03 \text { moles } \\
& =\frac{\text { Mass of solute }}{\text { Volume in dm }} \\
& =\frac{0.03}{0.03}=1 \mathrm{M}
\end{aligned}
$$

CANTT ACADEMY

Page-No-124: Q9: Formalin is an aqueous solution of formaldehyde (HCHO), used to preservative for biological specimens. A biologist wants to prepare $\mathbf{1 d m}{ }^{\mathbf{3}}$ of $\mathbf{1 1 . 5 M}$ formalin. What mass of formaldehyde he requires?

Volume of formalin	$=1 \mathrm{dm}^{3}$
Molarity	$=11.5 \mathrm{M}$
Mass of formaldehyde	$=?$

We know that if volume is $1 \mathrm{dm}^{3}$ then molarity and moles are equal

$$
\begin{aligned}
\text { Moles } & =\text { Molarity } \\
\text { Moles } & =11.5 \\
\text { Molar mass of HCHO } & =1+12+1+16=30 \mathrm{~g} / \mathrm{mole} \\
\text { Moles of solute } & =\frac{\text { Mass of solute }}{\text { Molar mass }} \\
\text { Moles of solute } & =\frac{\text { Mass of formaldehyde }}{\text { Molas mass }} \\
11.5 & =\frac{\text { Mass of HCHO }}{30} \\
11.5 \times 30 & =\text { Mass of HCHO } \\
\text { Mass of HCHO } & =345 \mathrm{~g}
\end{aligned}
$$

Page-No-124:Q. 10: A solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is prepared by dissolving 5.2 mg of $\mathrm{Ca}(\mathrm{OH})_{2}$ to a total volume of $100 \mathbf{~ c m}^{2}$. Calculate the molarity of this solution.

$$
\begin{aligned}
\text { Mass of } \mathrm{Ca}(\mathrm{OH})_{2} & =\frac{5.2}{1000}=0.0052 \mathrm{~g} \\
\text { Volume } & =\frac{1000}{1000}=1 \mathrm{dm}^{3} \\
\text { Molarity } & =? \\
\text { Molar mass of } \mathrm{Ca}(\mathrm{OH})_{2} & =40+(16 \times 2)+(1 \times 2) \\
& =40+32+2=74 \mathrm{~g} / \mathrm{mol} \\
\text { Moles of solute } & =\frac{\text { Mass of solute }}{\text { Molar mass }}=\frac{0.0052}{74} \\
& =0.0000702 \text { Moles or } 7.02 \times 10^{-5} \mathrm{moles}
\end{aligned}
$$

We know if volume is $1 \mathrm{dm}^{3}$ then moles and molarity are equal
Molarity $=$ Moles
So, Molarity $=7.02 \times 10^{-5} \mathrm{M}$

Q-No-11: Calculate the number of moles of solute present in $1.2 \mathrm{~cm}^{3}$ of $0.5 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution.

Moles	$=?$
Molarity	$=0.25 \mathrm{M}$
Volume	$=1.25 \mathrm{~cm}^{3}=\frac{1.25}{1000}=1.25 \times 10^{-3}$

Solution: Molarity $=\quad \frac{\text { Moles of solute }}{\text { Volume in } \mathrm{dm}^{3}}$
$0.25=\frac{\text { Moles of solute }}{1.25 \times 10^{-3}}$
Moles of solute $=0.25 \times 1.25 \times 10^{-3}=3.125 \times 10^{-4}$
Q-No-12: Calculate the new molarity when $100 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of 0.5 M HCl ?

Given Molarity	$=\mathrm{M}_{1}=0.5 \mathrm{M}$
Given Volume	$=\mathrm{V}_{1}=100 \mathrm{~cm}^{3}$
New Molarity	$=\mathrm{M}_{2}=?$
New Volume	$=\mathrm{V}_{2}=100+100=200 \mathrm{~cm}^{3}$

Solution: We know that

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
(0.5)(100) & =\left(\mathrm{M}_{2}\right)(200) \\
\frac{(0.5)(100)}{200} & =\mathrm{M}_{2}=0.25 \mathrm{M}
\end{aligned}
$$

Page - No - 153: Q-No-13:

Solutions play a very important role in our daily life some of the important uses of solutions are given as.
i) The air we breathe is a gaseous solution of nitrogen, Oxygen, carbondioxide and some other gases.
ii) The water we use for drinking, cooking and washing is not pure it contains some gases and minerals that are very important for our health.
iii) Some important commercial products such as shampoo, jams. jellies, milk, butter and cheese are also solutions.

